MANUFACTURING Planning and CONTROL for SUPPLY CHAIN MANAGEMENT **APICS/CPIM CERTIFICATION EDITION**

F. ROBERT JACOBS, WILLIAM L. BERRY, D. CLAY WHYBARK, THOMAS E. VOLLMANN

Manufacturing Planning and Control for Supply Chain Management

About the Authors

F. Robert Jacobs is a professor at the Kelley School of Business, Indiana University. He has served on the APICS board of directors and was a key author of the APICS "Body of Knowledge Framework." Mr. Jacobs is coauthor of previous editions of *Manufacturing Planning and Control for Supply Chain Management* and coauthor of *Operations and Supply Chain Management*.

William L. Berry is an emeritus professor at The Ohio State University and coauthor of previous editions of *Manufacturing Planning and Control for Supply Chain Management*.

D. Clay Whybark is an emeritus professor at the University of North Carolina and coauthor of previous editions of *Manufacturing Planning and Control for Supply Chain Management*.

Thomas E. Vollmann was a professor at IMD and coauthor of previous editions of *Manufacturing Planning and Control for Supply Chain Management.*

Manufacturing Planning and Control for Supply Chain Management

APICS/CPIM Certification Edition

F. Robert Jacobs Indiana University

William L. Berry *The Ohio State University (Emeritus)*

D. Clay Whybark *University of North Carolina (Emeritus)*

Thomas E. Vollmann *International Institute for Management Development*

New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-0-07-175032-5

MHID: 0-07-175032-0

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-175031-8, MHID: 0-07-175031-2.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information contained in this work has been obtained by The McGraw-Hill Companies, Inc. ("McGraw-Hill") from sources believed to be reliable. However, neither McGraw-Hill nor its authors guarantee the accuracy or completeness of any information published herein, and neither McGraw-Hill nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw-Hill and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. ("McGrawHill") and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill's prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED "AS IS." McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

We dedicate this book to Professor Thomas E. Vollmann. Tom's enthusiasm and brilliance have influenced virtually every page of this book since the first edition was published 26 years ago. Tom will be greatly missed by the author team and by the worldwide community of Operations Management colleagues of which he was a part. We are truly indebted to Professor Vollmann. This page intentionally left blank

BRIEF CONTENTS

	Preface	xxi
	Acknowledgments	xxxi
1	Manufacturing Planning and Control	1
2	Enterprise Resource Planning (ERP)	15
3	Demand Management	
4	Forecasting	75
5	Sales and Operations Planning	115
6	Advanced Sales and Operations Planning	161
7	Master Production Scheduling	183
8	Material Requirements Planning	215
9	Advanced MRP	253
10	Capacity Planning and Management	275
11	Production Activity Control	
12	Advanced Scheduling	349
13	Just-in-Time	
14	Distribution Requirements Planning	403
15	Management of Supply Chain Logistics	441
16	Order Point Inventory Control Methods	469
17	Strategy and MPC System Design	497
	Appendix A: Answers to APICS/CPIM Certification Questions	525
	Appendix B: Areas of the Standard Normal Distribution	529
	Index	

This page intentionally left blank

CONTENTS

	Preface	xxi
	Acknowledgments	xxxi
CHAPTER 1	Manufacturing Planning and Control	1
	The MPC System Defined	2
	Typical MPC Support Activities	2
	An MPC System Framework	3
	MPC System Activities	4
	Matching the MPC System with the Needs of the Firm	7
	An MPC Classification Schema	8
	Evolution of the MPC System	9
	The Changing Competitive World	10
	Reacting to the Changes	11
	Concluding Principles	11
	APICS/CPIM Certification Questions	12
CHAPTER 2	Enterprise Resource Planning (ERP)	15
	What Is ERP?	16
	Consistent Numbers	16
	Software Imperatives	17
	Routine Decision Making	18
	Choosing ERP Software	18
	How ERP Connects the Functional Units	19
	Finance	20
	Manufacturing and Logistics	21
	Sales and Marketing	21
	Human Resources	21
	Customized Software	22
	Data Integration	22

	How Manufacturing Planning and Control (MPC) Fits	
	within ERP	23
	Simplified Example	23
	Supply Chain Planning with mySAP SCM	24
	Supply Chain Execution with mySAP SCM	25
	Supply Chain Collaboration with mySAP SCM	
	Supply Chain Coordination with mySAP SCM	27
	Performance Metrics to Evaluate Integrated System	
	Effectiveness	27
	The "Functional Silo" Approach	
	Integrated Supply Chain Metrics	
	Calculating the Cash-to-Cash Time	
	What Is the Experience with ERP?	34
	Eli Lilly and Company—Operational Standards	
	for Manufacturing Excellence	
	Concluding Principles	
	APICS/CPIM Certification Questions	
CHAPTER 3	Demand Management	45
	Demand Management in MPC Systems	
	Demand Management and the MPC Environment	
	The Make-to-Stock (MTS) Environment	
	The Assemble-to-Order (ATO) Environment	
	The Make (Engineer)-to-Order (MTO) Environment	
	Communicating with Other MPC Modules and Customers	
	Sales and Operations Planning	53
	Master Production Scheduling	
	Dealing with Customers on a Day-to-Day Basis	55
	Information Use in Demand Management	
	Make-to-Knowledge	
	Data Capture and Monitoring	
	Customer Relationship Management	
	Outbound Product Flow	
	Managing Demand	
	Organizing for Demand Management	60
	Monitoring the Demand Management Systems	61
	Balancing Supply and Demand	62

	Collaborative Planning, Forecasting, and Replenishment (CPFR)	62
	Nine-Step CPFR Process Model	63
	Steps 1 and 2 of the CPFR Model	64
	Steps 3 through 9 in the CPFR Model	68
	Concluding Principles	69
	APICS/CPIM Certification Questions	70
CHAPTER 4	Forecasting	75
	Providing Appropriate Forecast Information	75
	Forecasting for Strategic Business Planning	77
	<i>Forecasting for Sales and Operations Planning</i>	77
	Forecasting for Master Production Scheduling and Control	78
	Regression Analysis and Cyclic Decomposition Techniques	79
	Example	80
	Decomposition of a Time Series.	
	Additive Seasonal Variation	84
	Multiplicative Seasonal Variation	84
	Seasonal Factor (or Index)	85
	Frample	85
	Frample	86
	Decomposition Using Least Squares Regression	87
	Frear Range	90
	Short Term Forecasting Techniques	01
	Moving Average Forecasting	, 91 02
	Noving-Average Porecusting	92
	Exponential Smoothing Forecasting	94
	Evaluating Forecasis	90
	Using the Forecasts	99
		99
	Pyramia Forecasting	101
	Incorporating External Information	. 103
	Concluding Principles	. 104
	APICS/CPIM Certification Questions	105
	Case Study: Forecasting at Ross Products	111
CHAPTER 5	Sales and Operations Planning.	115
	Sales and Operations Planning in the Firm	. 115
	Sales and Operations Planning Fundamentals	. 116
	Sales and Operations Planning and Management	. 117

	Operations Planning and MPC Systems	119
	Payoffs	121
	The Sales and Operations Planning Process	122
	The Monthly Sales and Operations Planning Process	122
	Sales and Operations Planning Displays	125
	The Basic Trade-Offs	129
	<i>Economic Evaluation of Alternative Plans</i>	133
	The New Management Obligations	136
	Top Management Role	136
	Functional Roles	137
	Integrating Strategic Planning	141
	Controlling the Operations Plan	142
	Concluding Principles	142
	References	143
	APICS/CPIM Certification Questions	143
	Case Study: Delta Manufacturing Company's Integrated Sales	
	and Operations Planning Process	148
CHAPTER 6	Advanced Sales and Operations Planning	161
	Mathematical Programming Approaches	161
	Linear Programming (LP)	162
	Mixed Integer Programming	163
	Company Example: Lawn King Inc.	166
	Company Background	166
	Deciding on a Planning Model	167
	The Linear Programming Model	168
	Developing the Planning Parameters.	169
	Solving the Linear Programming Model and Understanding	
	the Results	173
	Sales and Operations Planning Issues	175
	Using Microsoft Excel Solver	176
	Concluding Principles	179
	APICS/CPIM Certification Questions	180
CHAPTER 7	Master Production Scheduling	183
	The Master Production Scheduling (MPS) Activity	183
	The MPS Is a Statement of Future Output	184
	The Business Environment for the MPS	185
	/	

	Linkages to Other Company Activities	187
	Master Production Scheduling Techniques	189
	The Time-Phased Record	189
	Rolling through Time	190
	Order Promising and Available-to-Promise (ATP)	192
	Planning in an Assemble-to-Order Environment	196
	Managing Using a Two-Level MPS	199
	Master Production Schedule Stability	202
	Freezing and Time Fencing	203
	Managing the MPS	204
	The Overstated MPS	204
	Concluding Principles	205
	APICS/CPIM Certification Questions	205
	Case Study: Customer Order Promising at Kirk Motors Ltd	209
	Case Study: Hill-Rom's Use of Planning Bills of Materials	211
		215
CHAPTER 8	Material Requirements Planning	
	Material Requirements Planning in Manufacturing	
	Planning and Control	215
	Record Processing.	217
	The Basic MRP Record	217
	Linking the MRP Records	227
	Technical Issues.	229
	Processing Frequency	230
	Bucketless Systems	231
	Lot Sizing	231
	Safety Stock and Safety Lead Time	232
	Low-Level Coding	233
	Pegging	234
	Firm Planned Orders	234
	Service Parts	235
	Planning Horizon	235
	Scheduled Receipts versus Planned Order Releases	235
	Using the MRP System	236
	The MRP Planner	236
	Exception Codes	238
	Bottom-up Replanning	239
	An MRP System Output	241

	System Dynamics	241
	Transactions during a Period	243
	Rescheduling	244
	Complex Transaction Processing	244
	Procedural Inadequacies	246
	Concluding Principles	247
	APICS/CPIM Certification Questions	247
CHAPTER 9	Advanced MRP	253
	Determining Manufacturing Order Quantities	253
	Economic Order Quantities (EOQ)	255
	Periodic Order Quantities (POO)	256
	Part Period Balancing (PPB)	257
	Wagner-Whitin Algorithm.	258
	Simulation Experiments	259
	Buffering Concepts	260
	Categories of Uncertainty	260
	Safety Stock and Safety Lead Time	262
	Safety Stock and Safety Lead Time Performance Comparison	ns 263
	Scrap Allowances	265
	Other Buffering Mechanisms	266
	Nervousness	266
	Sources of MRP System Nervousness	267
	Reducing MRP System Nervousness	267
	Concluding Principles	269
	APICS/CPIM Certification Questions	270
CHAPTER 10	Capacity Planning and Management	275
	The Role of Capacity Planning in MPC Systems	276
	Hierarchy of Capacity Planning Decisions	276
	Links to Other MPC System Modules	277
	Capacity Planning and Control Techniques	
	Capacity Planning Using Overall Factors (CPOF)	
	Capacity Bills	
	Resource Profiles.	
	Capacity Requirements Planning (CRP)	
	Scheduling Capacity and Materials Simultaneously	
	Finite Capacity Scheduling	

	Finite Scheduling with Product Structures:	
	Using APS Systems	291
	Management and Capacity Planning/Utilization	295
	Capacity Monitoring with Input/Output Control	295
	Managing Bottleneck Capacity	298
	Capacity Planning in the MPC System	299
	Choosing the Measure of Capacity	
	Choice of a Specific Technique	302
	Using the Capacity Plan.	
	Concluding Principles	304
	APICS/CPIM Certification Questions	
	Case Study: Capacity Planning at Montell USA Inc	
	Case Study: Capacity Planning at Applicon	
	Case Study: Capacity Planning with APS at a Consumer	
	Products Company.	
CHAPTER 11	Production Activity Control	
	A Framework for Production Activity Control	
	MPC System Linkages	
	The Linkages between MRP and PAC	
	Just-in-Time Effect on PAC	
	The Company Environment	
	Production Activity Control Techniques	
	Basic Shop-Floor Control Concepts	
	Lead-Time Management	
	Gantt Charts	
	Priority Sequencing Rules	
	Theory of Constraints (TOC) Systems	
	Vendor Scheduling and Follow-up	339
	The Internet and Vendor Scheduling	
	Concluding Principles	
	APICS/CPIM Certification Questions	
	Case Study: Theory of Constraints (TOC) Scheduling	
	at TOSOH	
CHAPTER 12	Advanced Scheduling	349
	Basic Scheduling Research	
	The One-Machine Case	
	The Two-Machine Case	351

	Dispatching Approaches	352
	Sequencing Rules	352
	Advanced Procedures	355
	Due Date–Setting Procedures	355
	Dynamic Due Dates	358
	Labor-Limited Systems.	360
	Group Scheduling and Transfer Batches	362
	Concluding Principles	364
	APICS/CPIM Certification Questions	365
CHAPTER 13	Just-in-Time	
	IIT in Manufacturing Planning and Control	367
	Maior Elements of Iust-in-Time	368
	IIT's Impact on Manufacturing Planning and Control	370
	The Hidden Factory	371
	IIT Building Blocks in MPC	372
	A IIT Fxample	374
	I eveling the Production	376
	Pull System Introduction	379
	Product Design	380
	Process Design	382
	Rill of Materials Implications	384
	IIT Applications	385
	Single-Card Kanhan	385
	Toyota	386
	Nonrepetitive IIT	380
	A Service Enhanced View of Manufacturing	380
	Elorible Systems	300
	Simplified Systems and Douting Examplified	200
	Loint Firm UT	201
	Joint-Film J11	201
	The Dusus.	202
	JII Coordination through Hubs	
	Ine MKP-JII Separation.	
	JIT Planning and Execution	395

	Managerial Implications	396
	Information System Implications	
	Manufacturing Planning and Control	396
	Scorekeeping	
	Pros and Cons	
	Concluding Principles	398
	APICS/CPIM Certification Questions	399
CHAPTER 14	Distribution Requirements Planning	403
	Distribution Requirements Planning in the Supply Chain	403
	DRP and the MPC System Linkages	
	DRP and the Marketplace	406
	DRP and Demand Management	
	DRP and Master Production Scheduling.	409
	DRP Techniques	409
	The Basic DRP Record	
	Time-Phased Order Point (TPOP)	
	Linking Several Warehouse Records	
	Managing Day-to-Day Variations from Plan	
	Safety Stock in DRP	
	Management Issues with DRP	422
	Data Integrity and Completeness	
	Organizational Support	423
	Problem Solving	
	Concluding Principles	428
	APICS/CPIM Certification Questions	428
	Case Study: Abbott Laboratories	433
CHAPTER 15	Management of Supply Chain Logistics	441
	A Framework for Supply Chain Logistics	
	The Breadth of Supply Chain Logistics	
	The Total Cost Concept	
	Design, Operation, and Control Decisions	
	Supply Chain Logistical Elements.	445
	Transportation	445
	Warehouses	
	Inventory	
	,	

	Warehouse Replenishment Systems	451
	ROP/EOQ Systems	451
	Base Stock Systems	452
	Distribution Requirements Planning	454
	Warehouse Location Analysis	454
	Simulation	455
	Heuristic Procedures	456
	Programming Procedures	456
	Vehicle Scheduling Analysis	458
	Traveling Salesman Problem	458
	Solution Methodologies	459
	Customer Service Measurement	461
	Make-to-Stock Companies	461
	Make-to-Order Companies	462
	Concluding Principles	463
	APICS/CPIM Certification Questions	464
CHAPTER 16	Order Point Inventory Control Methods	469
CHAITER TO		
	Basic Concepts	470
	Independent- versus Dependent-Demand Items	470
	Functions of Inventory	471
	Management Issues	472
	Routine Inventory Decisions	472
	Determining Inventory System Performance	473
	Implementing Changes in Managing Inventory	
	Inventory-Related Costs	474
	Order Preparation Costs	475
	Inventory Carrying Costs	475
	Shortage and Customer Service Costs	476
	Incremental Inventory Costs	476
	An Example Cost Trade-Off	
	Economic Order Quantity Model	478
	Determining the EOQ	479
	Order Timing Decisions	481
	Using Safety Stock for Uncertainty	481
	The Introduction of Safety Stock	482
	Continuous Distributions	485

	Probability of Stocking Out Criterion	485
	Customer Service Criterion	487
	Time Period Correction Factor	489
	Forecast Error Distribution	490
	Multi-Item Management	491
	Concluding Principles	492
	APICS/CPIM Certification Questions	493
CHAPTER 17	Strategy and MPC System Design	497
	MPC Design Options	497
	Master Production Scheduling Options	498
	Detailed Material Planning Options	500
	Shop-Floor System Options	501
	Choosing the Options	503
	Market Requirements	504
	The Manufacturing Task	505
	Manufacturing Process Design	505
	MPC System Design	506
	The Choices in Practice	
	Moog Inc., Space Products Division	512
	Kawasaki U.S.A	514
	Applicon	
	Integrating MRP and JIT	519
	The Need to Integrate	519
	Physical Changes That Support Integration	520
	Some Techniques for Integrating MRP and JIT	520
	Extending MPC Integration to Customers and Suppliers	521
	Concluding Principles	522
	APICS/CPIM Certification Questions	522
APPENDIX A	Answers to APICS/CPIM Certification Questions	525
APPENDIX B	Areas of the Standard Normal Distribution	529
	Index	531

This page intentionally left blank

PREFACE

Interest in learning about manufacturing planning and control (MPC) is at a very high level around the world. There are versions of this book in a number of different languages attesting to its popularity as a standard reference on the topic. APICS—the Association for Operations Management—has seen growing interest in its Certified in Production and Inventory Management (CPIM) exam over the past few years. The number of people taking the exam has grown, particularly in countries outside the United States. Further, there are many individuals developing certification courses designed to efficiently teach the material to those wanting to take the exam. This APICS/CPIM special version of the book is especially designed for individuals studying for the exam.

As you may already know, the CPIM exam is divided into five modules. Although this book is not organized to directly correspond to these five modules, the book does provide fairly complete coverage of the topics in the five modules. In the tables following the Preface, we provide maps that show how the CPIM modules align with material in this book. Except for coverage of quality control (QC) and project management (PM), the coverage is very complete. We have not included these topics in this book in order to maintain our focus on MPC. Our goal has been to make this the *definitive* reference for MPC, so our coverage is more comprehensive in this area, and we leave the specialized topics of QC and PM to other books.

This book makes a great reference for those studying for the exam by providing practice questions similar to what one might see on the exam. These questions are at the end of each chapter. There are different types of questions, including objective definition questions, short problems, and more comprehensive sets of questions based on a scenario. This is similar to what one would see on the exam.

A real advantage of this book is that it goes well beyond the basics and can be used as a desk reference long after the CPIM exam has been taken. The book has proven to be the definitive reference for MPC for the past 26 years. The original authors of the book were true founding thought leaders in the field. Of course, the book has been significantly updated over the years as technology has changed and as we have learned more about how these things should be done.

In a sense, this edition of the book is designed to recognize the maturity of much of the material in this book. Since the first edition, published in 1984, the techniques and concepts in the book have developed to where most of the ideas are now commonly available in ERP (enterprise resource planning) systems. So, in this edition, we have significantly streamlined the presentation of the basic ideas. Our idea is that many of the readers of this book are students just learning the material who will appreciate a concise presentation with clear examples. We have, therefore, removed much of the "research"oriented material that was included in previous editions. We have removed some of the ideas that are not currently utilized, while adding new ideas that are now commonly used.

The first twelve chapters of the book provide a thorough coverage of manufacturing planning and control. In the spirit of previous editions of the book, our coverage is extensive and complete, yet as concise as we feel is reasonable. We are careful in our use of terminology so as not to confuse the reader by minimizing the use of "lingo," while introducing the vernacular of the operations and supply chain management professional. Terminology and the organization of the topics closely follow that used by APICS in the *APICS Dictionary* and in the *APICS Body of Knowledge Framework* (which was co-authored by an author of this book).

The last five chapters of the book focus on the integration of manufacturing with the supply chain. In these chapters, our emphasis is on the basic techniques and concepts, and we cover them in a manner that corresponds to how they are commonly implemented in ERP systems. Integration of MPC with the logistics and warehousing functions in the firm can no longer be an "arm's length" activity. Speed and efficiency require tight integration of these activities with minimal inventory buffering. Complicating matters is the often-common outsourcing of the shipping and warehousing activities, which places complex supply chain–related demands on the MPC system.

It is our contention that the supply chain professional of the future needs a very strong understanding of the material in this book. Just as the professional accountant must understand the basics of assets, liabilities, the balance sheet, and the income and expense statements, together with the transactions that generate the data in the accounting systems, so too must the supply chain professional understand a set of basic techniques and concepts. The sales and operations plan, master schedule, material requirements planning, and distribution requirements planning records tie the manufacturing function to the supplier on the inbound side and the customer on the outbound side in terms of material and inventory. Logic such as regression analysis, exponential smoothing, available-to-promise, material planning, and reorder points are the decision support tools that assist the professional making rational decisions within the realm of manufacturing and supply chain planning.

This book is designed to be an essential resource for both the student of the field and the practicing professional. Mastery of the contents provides a solid foundation on which comprehensive, firm-specific implementations can be developed. It is our contention that each firm has unique requirements dependent on special supplier and market requirements. A sustainable competitive advantage comes from taking an innovative approach to how material and inventory is managed. A comprehensive understanding of the key concepts and techniques available is essential to structuring and implementing the supply chain material and inventory planning systems used by the firm. This book is designed to support this understanding.

Chapter 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Cov																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Covered
Basics of Supply Cha	ain N	lanag	gemei	nt														
I. Businesswide Cond	epts	5																
Organizational fundamentals	Х																	Yes
Operating environments	Х	Х	Х												Х		Х	Yes
Financial fundamentals				Х														Yes
Enterprise resource planning (ERP)	Х	Х													Х			Yes
Lean (JIT)												Х	Х				Х	Yes
Quality management systems	Х																	Yes
Impact of environmer on system design and deployment	nt 1										Х		Х					Yes
Theory of constraints (TOC)										Х	Х							Yes
II. Demand Manager	nent																	
Market driven			Х															Yes
Customer expectations and definition of value	Х																	Yes
Customer relationship management (CRM)	C		Х															Yes
Demand planning			Х											Х				Yes

xxiv

								Chapt	ter									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Covered
III. Transformation of	of De	manc	d into	Suppl	у													
Design													Х					Yes
Capacity manageme	nt									Х	Х							Yes
Planning	Х				Х		Х			Х								Yes
Execution and control	Х									Х	Х	Х						Yes
Performance measurements	Х															Х		Yes
IV. Supply																		
Inventory		Х					Х		Х				Х			Х		Yes
Purchasing																Х		Yes
Physical distribution system														Х	Х			Yes

X									Chap	oter									
≧.		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Covered
	Master Planning of	Reso	urces																
	I. Demand Manager	nent																	
	General concepts and purposes			Х															Yes
	Forecasting demand			Х	Х										Х				Yes
	Management of the customer interface			Х				Х											Yes
	Distribution planning	9		Х											Х				Yes
	II. Sales and Operat	ions	Planni	ng															
	General concepts and purposes			Х		Х													Yes
	Management considerations				Х	Х													Yes
	SOP process					Х													Yes
	Developing and validating the production plan					Х	Х												Yes
	III. Master Schedulir	ng																	
	General concepts and purposes					Х		Х											Yes
	Linking the master scheduling process to the business environ	o ment						Х											Yes
	Management considerations							Х											Yes
	The master scheduling process				Х			Х			Х								Yes
	Measuring master schedule performanc	ce						Х			Х								Yes

Chapter																		
1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Covered
Detailed Scheduling an	d F	Plann	ing															
I. Planning the Manage	me	nt of	f Inve	ntory														
Types and classifications of inventory									Х									Yes
Inventory policies								Х								Х		Yes
Inventory planning			Х					Х					Х					Yes
Accuracy, handling, and storage																Х		Yes
II. Planning Material Re	qui	irem	ents t	o Sup	port	the N	laste	r Sche	dule									
Identifying information used in the material planning process								Х	Х		Х							Yes
Identifying the desirable characteristics of the detailed material planning process								Х										Yes
Mechanics of the detailed material planning process								Х									Х	Yes
Maintaining the validity of the material plan								Х	Х		Х	Х			Х			Yes
Managing the project plan											Х							Yes
																		(Continued)

Chapter																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Covered
III. Planning Operat	tions	to Sup	oport	the Pı	riority	Plan												
Identifying informat used in the detailed capacity planning process	ion									Х								Yes
Recognizing the characteristics and techniques of the detailed capacity planning process												Х						Yes
Using the detailed capacity planning process										Х	Х	Х						Yes
Measuring the performance of the detailed planning process										Х		Х	Х					Yes
IV. Planning Procur	emen	t and	Exter	nal So	urces	of Su	ıpply											
Establishing relationships with suppliers	Х																Х	Yes
Techniques and concepts for supplier partnerships		Х	Х															Yes

XXVIII

								Chap	ter									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Covered
Execution and Contro	ol of	^r Ope	ratior	าร														
I. Prioritizing and Seq	luen	cing	Work	to Be	Perf	orme	d											
Interfaces											Х							Yes
Operational environme	ent										Х							Yes
Understanding and controlling operations schedule development	by t							Х		Х	Х	Х						Yes
II. Executing the Plans	s, In	nplen	nentin	ıg Cor	ntrol,	and F	Repor	ting R	lesult	s of A	Activi	ties Po	erform	ned				
Understanding the operations of push systems								Х										Yes
Understanding the operations of pull system	ems											Х	Х					Yes
Communicating internal information													Х					Yes
Communicating external customer- supplier information													Х					Yes
Material flow and locat	tion												Х					Yes
III. Performance Repo	ortin	g and	d Fee	dback														
Quality management processes																		No
Monitoring supplier performance																	Х	Yes
Monitoring and measuring operations performance											Х							Yes
Cost management pro	cess	5											Х					Yes

Chapter																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Covered
Strategic Managem	nent c	of Res	ource	S														
I. Aligning the Reso	ources	with	the S	trateg	gic Pla	an												
Strategic issues																	Х	Yes
Choices affecting operations structure																	Х	Yes
Choices affecting operations infrastructure																	Х	Yes
II. Configuring and	Integ	rating	g the (Opera	tions	Proc	esses	to Su	ppor	t the	Strat	egic F	lan					
Implementing the strategic plan																	Х	Yes
Emerging concepts and the supply chair	ı																Х	Yes
Configuring and integrating design and development and cost management processes																	Х	Yes
III. Monitoring Perfe	ormai	nce ar	nd Imj	oleme	nting	Char	nge											
Project managemen	t																	No
Measuring organizational performance																		No
Change managemer	nt																	No

XXX

ACKNOWLEDGMENTS

As with all of the previous editions of this book, we have benefited from the comments of the many reviewers and users of the book. We are indebted to all of the loyal readers of the book who have given us literally thousands of ideas about how things should be explained, concepts that should be included, and stories about how it is done in practice. The process of change and updating is continuous with a book of this type, and we sincerely want to thank all who have lent their time to this effort.

We particularly want to think the staff at APICS—the Association for Operations Management—for their support of this book. Abe Eshkenazi, the chief executive officer, and Sharon Rice, executive vice president of professional development, have been helpful in the development of this book. We have found the feedback from the volunteer exam committees at APICS helpful as well, and want to thank them.

For this edition, we especially want to thank Greg DeYong and Jerry Kilty for their help. Greg wrote the questions for each chapter and provided many helpful suggestions. Jerry has spent much time just talking to us about the APICS Certification Exam modules and how the Certification courses work. We have also enjoyed working with the APICS E&R Board, where Jerry, together with Robert Vokurka, Romona Memmott, Jim Chisholm, and Mark Harris, has been fun to work with.

A special thinks to Rhonda Lummus for all of the spirited discussion about this book and supply chain management in general. She has been a great inspiration over the past two years.

Finally, we need to thank the staff at McGraw-Hill. In the Higher Education division, special thanks to Dick Hercher, who kept the team going for six editions of this book. Judy Bass from McGraw-Hill Professional was the key person who enabled the special APICS/CPIM Edition to be published. Thanks very much to both of you for the support.

F. Robert Jacobs William L. Berry D. Clay Whybark This page intentionally left blank

CHAPTER 1

Manufacturing Planning and Control

The manufacturing planning and control (MPC) system is concerned with planning and controlling all aspects of manufacturing, including managing materials, scheduling machines and people, and coordinating suppliers and key customers. Because these activities change over time and respond differently to different markets and company strategies, this chapter provides a model for evaluating responses to changes in the competitive environment. We believe that the development of an effective manufacturing planning and control system is key to the success of any goods producing company. Moreover, truly effective MPC systems coordinate supply chains—joint efforts across company boundaries. Finally, MPC systems design is not a one-time effort; MPC systems need to continuously adapt and respond to changes in the company environment, strategy, customer requirements, particular problems, and new supply chain opportunities. The critical question is not what one has accomplished; it is "What should the firm, together with its supply chain partners, do next?" To put these ideas in perspective, this chapter is organized around the following four managerial concerns:

- ▲ *The MPC system defined:* What are the typical tasks performed by the MPC system and how do these tasks affect company operations?
- ▲ *An MPC system framework:* What are the key MPC system components and how do they respond to a company's needs?
- ▲ *Matching the MPC system with the needs of the firm:* How do supply-chain product and process issues affect MPC system design?
- ▲ *Evolution of the MPC system:* What forces drive changes in the MPC system and how do companies respond to the forces?

The MPC System Defined

In this section we define what the MPC system does and some of the costs and benefits associated with effective MPC systems. The essential task of the MPC system is to manage efficiently the flow of material, to manage the utilization of people and equipment, and to respond to customer requirements by utilizing the capacity of our suppliers, that of our internal facilities, and (in some cases) that of our customers to meet customer demand. Important ancillary activities involve the acquisition of information from customers on product needs and providing customers with information on delivery dates and product status. An important distinction here is that the MPC system provides the information upon which managers make effective decisions. The MPC system does not make decisions nor manage the operations—managers perform those activities. The MPC system provides the support for them to do so wisely.

Typical MPC Support Activities

The support activities of the MPC system can be broken roughly into three time horizons: long term, medium term, and short term. In the long term, the system is responsible for providing information to make decisions on the appropriate amount of capacity (including equipment, buildings, suppliers, and so forth) to meet the market demands of the future. This is particularly important in that these decisions set the parameters within which the firm responds to current demands and copes with short-term shifts in customer preferences. Moreover, long-term planning is necessary for the firm to provide the appropriate mix of human resource capabilities, technology, and geographical locations to meet the firm's future needs. In the case of supply chain planning, the long term has to include the same kind of capacity planning for the key suppliers. For companies that outsource their manufacturing to outside companies, the planning of supplier capacity can be more critical than internal capacity planning. Moreover, the choice of outsourcing partners has to consider their capabilities to ramp up and adjust capacities to the actual dictates of the marketplace.

In the intermediate term, the fundamental issue addressed by the MPC system is matching supply and demand in terms of both volume and product mix. Although this is also true in the longer term, in the intermediate term, the focus is more on providing the exact material and production capacity needed to meet customer needs. This means planning for the right quantities of material to arrive at the right time and place to support product production and distribution. It also means maintaining appropriate levels of raw material, work in process, and finished goods inventories in the correct locations to meet market needs. Another aspect of the intermediate-term tasks is providing customers with information on expected delivery times and communicating to suppliers the correct quantities and delivery times for the material they supply. Planning of capacity may require determining employment levels, overtime possibilities, subcontracting needs, and support requirements. It is often in the intermediate time frame that specific coordinated plans including corporate budgets, sales plans and quotas, and output objectives—are set. The MPC system has an important role in meeting these objectives.

In the short term, detailed scheduling of resources is required to meet production requirements. This involves time, people, material, equipment, and facilities. Key to this activity is people working on the right things. As the day-to-day activities continue, the MPC system must track the use of resources and execution results to report on material consumption, labor utilization, equipment utilization, completion of customer orders, and other important measures of manufacturing performance. Moreover, as customers change their minds, things go wrong, and other changes occur, the MPC system must provide the information to managers, customers, and suppliers on what happened, provide problem-solving support, and report on the resolution of the problems. Throughout this process, communication with customers on production status and changes in expectations must be maintained.

To effectively manage the manufacturing processes, a number of manufacturing performance indicators need to be compiled. Among these are output results; equipment utilization; and costs associated with different departments, products, labor utilization, and project completions. Also, measures of customer satisfaction such as late deliveries, product returns, quantity errors, and other mistakes are needed. The implications physically and financially of the activities on the manufacturing floor are collected, summarized, and reported through the MPC system.

The initial costs for a manufacturing planning and control system can be substantial. Moreover, the ongoing operational costs are also significant. An effective MPC system requires a large number of professionals and all their supporting resources, including computers, training, maintenance, and space. It's not uncommon to find the largest number of indirect employees at a manufacturing firm to be involved in the MPC area.

An MPC System Framework

It is most typical now to find the MPC system imbedded in an enterprise resource planning (ERP) system. Many essential activities that need to be performed in the MPC system have not changed. However, the details have evolved as changes in our knowledge, technology, and markets have occurred. The MPC activities are now carried out in more areas of the firm and differ to meet the strategic requirements of the company. In this section, we'll provide our framework for understanding the MPC system.

MPC System Activities

Figure 1.1 is a schematic of the general MPC system that would be used within a firm for planning and controlling its manufacturing operations. But linking customer and supplier firms in a supply chain requires coordinating the MPC activities between the firms. The model shown in Figure 1.1 is essentially what one will find as a key part of any packaged ERP system. The figure is divided into three parts or phases. The top third, or front end, is the set of activities and systems for overall direction setting. This phase establishes the overall company direction for manufacturing planning and control. Demand management encompasses forecasting customer/end-product demand, order entry, order promising, accommodating interplant and intercompany demand, and spare parts requirements. In essence, demand management coordinates all activities of the business that place demands on manufacturing capacity.

Sales and operations planning balances the sales/marketing plans with available production resources. The result is an agreed-on company game plan that determines the

Figure 1.1 Manufacturing Planning and Control System (simplified)

manufacturing role in meeting company strategy. Increasingly, this activity is receiving more management attention as the need for coordination is recognized in progressive firms. The master production schedule (MPS) is the disaggregated version of the sales and operations plan. That is, it states which end items or product options manufacturing will build in the future. The MPS must support the sales and operations plan. Resource planning determines the capacity necessary to produce the required products now and in the future. In the long run this means bricks and mortar, while in the short run it means labor and machine hours. Resource planning provides the basis for matching manufacturing plans and capacity.

The middle third, or engine, in Figure 1.1 encompasses the set of MPC systems for detailed material and capacity planning. The master production schedule feeds directly into the detailed material planning module. Firms with a limited product range can specify rates of production for developing these plans. However, for firms producing a wide variety of products with many parts per product, detailed material planning can involve calculating requirements for thousands of parts and components, using a formal logic called material requirements planning (MRP). MRP determines (explodes) the period-by-period (time-phased) plans for all component parts and raw materials required to produce all the products in the MPS. This material plan can thereafter be utilized in the detailed capacity planning systems to compute labor or machine center capacity required to manufacture all the component parts.

The bottom third, or back end, of Figure 1.1 depicts MPC execution systems. Here, again, the system configuration depends on the products manufactured and production processes employed. For example, firms producing a large variety of products using thousands of parts often group all equipment of a similar type into a single work center. Their shop-floor system establishes priorities for all shop orders at each work center so the orders can be properly scheduled. Other firms will group mixtures of equipment that produce a similar set of parts into work centers called production cells. For them, production rates and just-in-time (JIT) systems for execution are appropriate.

The supplier systems provide detailed information to the company suppliers. In the case of arm's length relationships with these suppliers, the supplier systems will produce purchase orders that will be transmitted to the suppliers. Thereafter, the company MPC systems should provide suppliers with updated priority information, based on current conditions in the company—as well as in their customers' companies. In the case of closer (partnership) relations with suppliers, information can also include future plans—to help the suppliers understand expected needs. In a general sense the receiving end of this information is the demand management module of the front end in the suppliers' MPC systems.

In firms using MRP systems, execution of the detailed material and capacity plans involves detailed scheduling of machines and other work centers. This scheduling must reflect such routine events as starting and completing orders for parts and any problem conditions, such as breakdowns or absenteeism. These schedules are often available on a real-time basis from the ERP system database. Real-time data are particularly important in factories with complex manufacturing processes and/or customers demanding responsiveness to volume, design, or delivery schedule changes.

Components and materials sourced from outside the organization require an analogous detailed schedule. In essence, purchasing is the procurement of outside work center capacity. It must be planned and scheduled well to maximize final customer satisfaction. Best-practice purchasing systems typically separate the procurement or contractual activity from routine order release and follow-up. Procurement, a highly professional job, involves contracting for vendor capacity and establishing ground rules for order release and order follow-up. These tasks take on extra dimensions as procurement involves global sourcing and multinational coordination of schedules.

There are important activities that are not depicted in Figure 1.1. These include the measurement, follow-up, and control of actual results. As products are manufactured, the rate of production and timing of specific completion can be compared to plans. As shipments are made to customers, measures of actual customer service can be obtained. As capacity is used, it too can be compared to plans. If actual results differ from plan, appropriate actions to bring the results back to plan or modifications of the plan must be made. These measurements and control actions are part of all three of the phases of the MPC system.

Also not depicted in Figure 1.1 are quality management systems. Depending on the needs of the firm, these systems monitor details associated with how well processes are able to meet design specifications for the items being produced. Techniques that involve sampling—such as statistical process control and acceptance sampling—are tracked within these systems. Individual item tracking, batch analysis, and the monitoring of machines, for example, might be the focus of these systems. Due to the number of topics involved in this area, we have not included these systems within the scope of material covered by this book. We certainly recognize how important the area is to the success of the MPC system.

The three-phase framework for manufacturing planning and control is supported by widely available MPC systems and software, from master production scheduling to the back-end systems. This software is not only integrated to follow the framework, it is also linked to other business activities in the ERP systems of many firms. That means that the MPC systems provide inputs to the financial, distribution, marketing, and human resources systems that require the information.

Matching the MPC System with the Needs of the Firm

The specific requirements for the MPC system design depend on the nature of the production process, the degree of supply chain integration, customers' expectations, and the needs of management. As the MPC system is required to integrate with other company systems in the supply chain and/or with the ERP system of the firm, additional design parameters are introduced. Moreover, these MPC system requirements are not static. As competitive conditions, customer expectations, supplier capabilities, and internal needs change, the MPC system needs to change. In addition, the changes that are being addressed as we make one set of modifications may well be different when we move to another change that needs addressing. The result is a different emphasis on various MPC system modules over time.

The MPC system will be changed based on the ongoing goal to meet customer expectations and maximize value to the customer. Customer expectations related to such competitive priorities as speed of delivery; delivery reliability; and availability from stock, cost, and flexibility to customize a product, for example, are a direct result of how the MPC system is operated. The value or worth of a good or service to the customer is directly affected by the system. Customer expectations and the value proposition are key drivers of changes to the system over time.

MPC technology continues to change over time as well. The present trend is to more online data access and systems. MPC status is also a product of the increasing speeds, decreasing costs, and increasing storage capabilities of modern computers. Online systems provide multiple advantages, particularly between firms. Internet-based systems are becoming an important way to support intrafirm coordinated efforts. For these firms the amount of paper moving between departments of a company or between companies has been greatly reduced. Planning cycles have been speeded up. Inventories between partners in the supply chain are being replaced by speedier information. All of these changes dramatically affect the way users interact with the MPC system. As information-processing capabilities increase, MPC systems have evolved to utilize the latest technologies.

MPC systems must also reflect the physical changes taking place on the factory floor. Outsourcing, contract manufacturing, and the hollowing out of the corporation dramatically affect MPC systems design. Moves from job shops to flow processes to cellular manufacturing approaches affect the MPC systems design as well. Providing information at the level where decisions are made in appropriate time frames has greatly augmented the use of computers on the factory floor and the speed of interaction between planning and execution.

It's not, however, just on the factory floor that changes dictate the MPC system needs. As the firm shapes its manufacturing strategy, different modules of the MPC system may need to be modified to respond. As an example, firms that are increasing product variety may need to strengthen the master production scheduling and detailed material planning modules in order to more quickly phase in and phase out new products. Firms that are competing on delivery speed may need to improve shop-floor execution and feedback systems to more closely monitor the progress of products through the manufacturing facility. This matching of strategic direction with MPC system design is as dynamic as any of the other elements that shape the MPC system requirements.

An MPC Classification Schema

Figure 1.2 shows the relationship between MPC system approaches, the complexity of the manufactured product as expressed in the number of subparts, and the repetitive nature of production, expressed as the time between successive units. Figure 1.2 also shows some example products that fit these time and complexity scales.

Several MPC approaches presented in Figure 1.2 are appropriate for products that fit in various points in the schema. The figure demonstrates that the MPC emphasis changes as the nature of the product, process, or both, changes. For example, as a product's sales volume grows over time, the MPC emphasis might shift from right to left. Regardless of where the company is in Figure 1.2, it's necessary to perform all the activities depicted in Figure 1.1. However, how they are performed can be quite different for firms at different points in Figure 1.2.

The lower left-hand corner of Figure 1.2 shows a flow-oriented manufacturing process typical of many chemical, food, petroleum, and bulk product firms. Because products are produced in streams instead of discrete batches, virtually no time elapses between successive units. With these processes, the front-end concern of the MPC system is primarily the flow rates that become the master production schedule. Typically, these products have relatively few component parts, so engine management is straightforward.

Figure 1.2 MPC Classification Schema

Depending on how components are purchased, the back end may involve some complexity. Typically, these firms' major cost is for raw materials, although transportation costs can also be significant.

Repetitive manufacturing activities are found in many plants that assemble similar products (e.g., automobiles, watches, personal computers, pharmaceuticals, and televisions). For such products, component-part management is necessary, but everything is coordinated with the flow or assembly rate for the end items.

In the middle of the figure we show a large application area for just-in-time systems. Using lean manufacturing approaches, many firms today try to move their processes from right to left in the figure. That is, they try to make processes more repetitive as opposed to unique in order to achieve the operational advantages of repetitive manufacturing (shorter production cycles, reduced lead times, lower inventories, and the like). JIT is shown as spanning a wide variety of products and processes. This MPC approach is increasingly being integrated with more traditional MRP-based systems. The goal is to achieve better MPC system performance and to reduce costs of maintaining the MPC system.

Figure 1.2 also shows material requirements planning as spanning a wide area. MRP is often the platform for ERP applications and is key to any MPC system involving management of a complicated parts situation. The majority of manufacturing firms have this sort of complexity, and MRP-based systems continue to be widely applied. For many firms, successful use of MRP is an important step in evolving their approaches to MPC. Once routine MRP operation is achieved, portions of the product and processes that can be executed with JIT methodologies can be selected.

The last form of MPC depicted in Figure 1.2, the project type, is applied to unique long-lead-time products, such as ships and highly customized products. Here, the primary concern is usually management of the time dimension. Related to time is cost. Project management attempts to continually assess partially completed projects' status in terms of expected completion dates and costs. Some firms have successfully integrated MRP approaches with the problems of project management. This is particularly effective in planning and controlling the combined activities of engineering and manufacturing.

Evolution of the MPC System

Throughout this chapter, we have discussed the dynamism of the MPC system. This notion is so important that we devote an entire section to the topic. Although the activities shown in Figure 1.1 are performed in every manufacturing company, whether large or small, MPC system configuration depends strongly on the company's attributes at a particular point in time. The key to keeping the MPC system matched to evolving company needs is to

ensure that system activities are synchronized and focused on the firm's strategy. This ensures that detailed MPC decision making is in harmony with the company's game plan. But the process is not static—the need for matching is ongoing.

The Changing Competitive World

Figure 1.3 depicts some manufacturing firms' typical responses to changing marketplace dictates. New technology, products, processes, systems, and techniques permit new competitive initiatives; global competition intensifies many of these forces. Marketplace dictates drive revisions in company strategy, which in turn often call for changes in manufacturing strategy, manufacturing processes, and MPC systems.

Shorter product life cycles come about partly because consumers have access to products from all over the world. This has spawned the move to "time-based competition." Who can get to the market quickest? Similarly, today's market insists on ever-higher quality, which in turn has led to many changes in manufacturing practices. Cost pressures have translated into reductions of all manufacturing cost components from material and labor to overhead and energy.

But increasingly, cost and quality are the ante to play the game—winning requires flexibility and responsiveness in dealing with even more fickle customer demands. Clearly, these pressures and responses require changes in both the MPC system and the underlying manufacturing process. As Figure 1.3 shows, typical MPC responses are MRP and JIT.

Figure 1.3 Evolutionary Responses to Forces for Change

Process responses include automation, simplification, and production cells for cellular manufacturing.

Reacting to the Changes

If the MPC system has remained unchanged for a significant length of time, it may no longer be appropriate to the company's needs. The system, like the strategy and processes themselves, must change to meet the dictates of the market. In many instances, this may simply imply a different set of evaluative criteria for the MPC system. In other cases, new modules or information may be required. In yet other cases, entire MPC activities may need to be eliminated. For example, JIT systems frequently move materials so quickly through the factory that MRP and shop-floor scheduling systems to track them are not needed. In supply chain management approaches, the emphasis shifts to the total costs (and values created) in the joint activities of more than one firm. The typical focus is on the dyad: two firms where time and inventories are substantially reduced.

The need for evolution in MPC systems implies the need for periodic auditing that compares system responses to the marketplace's requirements. The audit must address not only the system's focus but also the concomitant training of people and match with current objectives. Although the MPC framework in Figure 1.1 is general, its application is specific and evolving. Keeping it on track is an essential feature of MPC itself.

Concluding Principles

This chapter lays the groundwork for the rest of the book. Defining and adjusting the MPC system to support the manufacturing activity are an ongoing challenge. We hope that, as you read the rest of the book, you constantly ask how the general framework applies in specific instances, and what is happening to ensure a better match between MPC system design and marketplace dictates. From the chapter we draw the following principles:

- ▲ The framework for MPC is general, and all three phases must be performed, but specific applications necessarily reflect particular company conditions and objectives.
- ▲ In supply chain environments, the MPC system must coordinate the planning and control efforts across all companies involved.
- ▲ Manufacturing planning and control systems should support the strategy and tactics pursued by the firm in which they are implemented.
- Different manufacturing processes often dictate the need for different designs of the MPC system.

- ▲ The MPC system should evolve to meet changing requirements in the market, technology, products, and manufacturing processes.
- ▲ The manufacturing planning and control system should be comprehensive in supporting the management of all manufacturing resources.
- ▲ An effective MPC system can contribute to competitive performance by lowering costs and providing greater responsiveness to the market.
- ▲ In firms that have an integrated ERP system and database, the MPC system should integrate with and support cross-functional planning through the ERP system.

APICS/CPIM Certification Questions

- **1.** Manufacturing planning and control (MPC) includes which of the following activities?
 - I. Material management
 - II. Product marketing
 - III. Coordinating suppliers
 - a. I only
 - b. II only
 - c. III only
 - d. I and III
- **2.** In the MPC process, capacity decisions (equipment, facilities, suppliers, etc.) are most likely to occur in which time horizon?
 - a. Short
 - b. Intermediate
 - c. Long
 - d. Immediate
- **3.** In the MPC process, detailed scheduling decisions are most likely to occur in which time horizon?
 - a. Short
 - b. Intermediate
 - c. Long
 - d. Immediate
- 4. Shop-floor systems are a part of which MPC phase?
 - a. Direction setting
 - b. Detailed planning
 - c. Execution
 - d. All of the above

- **5.** Sales and operations planning (SOP) and demand management are a part of which MPC phase?
 - a. Direction setting
 - b. Detailed planning
 - c. Execution
 - d. All of the above
- **6.** Master production scheduling (MPS) and resource planning are a part of which MPC phase?
 - a. Direction setting
 - b. Detailed planning
 - c. Execution
 - d. All of the above
- 7. Measurement and control are a part of which MPC phase?
 - a. Direction setting
 - b. Detailed planning
 - c. Execution
 - d. All of the above
- **8.** Products that are part of a continuous production process (e.g., petroleum products) would most likely use which form of MPC?
 - a. MRP
 - b. Just-in-time
 - c. Flow
 - d. Repetitive
 - e. Project
- **9.** Products that are part of a one-time production process (e.g., bridges or aircraft carriers) would most likely use which form of MPC?
 - a. Just-in-time
 - b. Flow
 - c. Repetitive
 - d. Project
- **10.** Updating an old MPC system can include which of the following?
 - I. Adding new modules or functionality
 - II. Consideration of new decision criteria
 - III. Removing unneeded/obsolete modules or functionality
 - a. I only
 - b. II only
 - c. III only
 - d. I, II, and III